Effectiveness of Remediation in the Cochato River, Baird & McGuire Superfund Site

Cornell Rosiu

U.S.EPA - New England (Region 1)
Office of Site Remediation and Restoration

Deirdre Dahlen

Battelle Duxbury Operations

May 31, 2001 U.S.EPA Forum on Managing Contaminated Sediments at Hazardous Waste Sites

Acknowledgements

Melissa Taylor

U.S.EPA-NE, Remedial Project Manager

Andrew Beliveau

U.S.EPA-NE, QA Officer

Lisa Lefkovitz

Battelle Duxbury Operations

Presentation Overview

- Site History and Background
- Long-Term Monitoring Program
 - Objectives
 - Stations Monitored
 - Parameters Monitored
- Results of Monitoring
 - Fish
 - Sediment and River Bank Soil
- Summary and Conclusions

Baird & McGuire Site History

Long-Term Monitoring Program Asks the Following Questions

- Are Concentrations of COCs in Fish Fillets Below Project Action Limits (PALs)?
- Are Concentrations in Sediment and River Bank Soil Below PALs?
- Are Time Trends Apparent, and if so, in Which Medium and Where?
- Are Concentrations Overall Increasing or Decreasing?

Monitoring Stations in the Cochato River

Listed Up to Downstream:

Station A - Control location upstream and outside the influence of the Site

Station E - Adjacent to the Site (area of excavation)

Station B - Between Union and Center Streets

Station C - Ice Pond reach of the River

Station D - Mary Lee Wetlands reach

Cochato River On Site and Downstream 4-Years Post-Remediation

Station E, adjacent to the Site area of excavation in the River (Battelle, 1999)

Station B, 400-meters downstream of the Site and excavation (Battelle, 1999)

Long-Term Monitoring Program Measurement Parameters 1988-2000

Parameter	1988	1992	1996	1997	1998	1999	2000
Sediment/Soil Chemistry							
Arsenic	X		X	X	X	X	X
Chlorinated Pesticides and PAHs	X		X	X	X	X	X
Tissue Chemistry							
Arsenic		X					
Chlorinated Pesticides and* PAHs		X	X	_		X*	X*
PCB		X					
Dioxin/Furans		X					
Ancillary Measurements							
Grain Size (sediment/soil)	X		_	X	X	X	X
TOC (sediment/soil)	X		X	X	X	X	X
% Lipid (tissue) and Fish Aging		X		- a	3 -	X	X

Species, Ages and Sample Size of Fish Fillets in 1999 for Tissue Chemistry

Parameter		Station and Species								
	Units	A		В	C	D Sylvan Lake (SL)		(SL)	Program Year	
		PS	RP	BG	BG	RP	BB	BB	CP	
Approximate Age ^a	Year	3 - 4	3 - 6	2 - 4	2 - 5	2-4	NA	NA	8	1999
Sample Size b	N	8	4	14	8	8	1	1	1	1999

BB – brown bullhead; BG – bluegill; CP – chain pickeral; PS – pumpkinseed; RP – redfin pickeral NA – Not applicable/available because age analysis not performed on brown bullhead.

^a Fish aged using fish scale analysis for individual fish used in composite fillets.

^b Age analysis on a total of 43 fish that produced 17 composite fillets for tissue chemistry.

Total Chlordane in Fish Fillet, 1992-1999

Total DDT in Fish Fillet, 1992-1999

PAH in Fish Fillet, 1999

Overall Trends in Fish Contamination 1992-1999 or 1996-1999^a

Station	Station Description	Total DDT	Total Chlordane	Total PAH
Station A	Control	\	\	No Trend
Station E	Adjacent to the Site	No Sample	No Sample	No Sample
Station B	Between Union and Center Streets	\	\	No Trend
SL	Sylvan Lake	\	\	No Trend
Station C	Ice Pond	\	\	No Trend
Station D	Mary Lee Wetlands	\	\	No Trend

^a Decreases in 1996-1999 fish from Stations A-D, and 1992-1999 fish from Sylvan Lake

Mean Total Chlordane in Sediment and River Bank Soil, 1988-2000

Mean Total DDT in Sediment and River Bank Soil, 1988-2000

Mean Arsenic in Sediment and River Bank Soil, 1988-2000

Mean Total PAH in Sediment and River Bank Soil, 1988-2000

Overall Trends in Sediment and River Bank Soil Contamination 1988-2000

Station	Station Description	Arsenic	Total DDT	Total Chlordane	Total PAH
Station A	Control	No Trend	No Trend	No Trend	1
Station E	Adjacent to the Site	No Trend	No Trend	No Trend	No Trend
Station B	Between Union and Center Streets	No Trend	\downarrow	No Trend	No Trend
Station C	Ice Pond, River	\downarrow	\	\downarrow	\
Station C	Ice Pond, Bank	No Trend	No Trend	↓	1
Station D	Mary Lee Wetlands, River	No Trend	No Trend	No Trend	No Trend
Station D	Mary Lee Wetlands, Bank	\	No Trend	\	No Trend

Apparent trends in 1988-2000 sediment concentrations were estimated using Mann-Kendall test (Gilbert, 1987)

Summary - Sediment and River Bank Soil Monitoring

- Concentrations Were Below Media-Specific PALs
- Single Year Peak in Concentrations 1-3 Years After Remediation, but Overall Downward Trends from 1988 to 2000, Except for Total PAH
- Upward Trend in Total PAH in Sediment at Station A (Upstream) and in River Bank Soil at Station C
- River Bank Soils Are Likely Depositional for Fine Grain Particle-Bound Contaminants

Summary – Fish Monitoring

- In 1999, Concentrations in Fish Were Below Chemical-Specific Project Action Limits (PALs)
- B(a)P and Total DDT in Large Bullhead from Sylvan Lake Approached PALs, and Fish Upstream of the Site had Higher Total PAH Compared to Others
- A Year After Remediation (in 1996), Concentrations in Fish had Increased
- Within 4-Years Post-Remediation, Concentrations in Fish had Decreased Significantly to Below PALs

Conclusions

Remediation of Contaminated Sediment Was Effective in Significantly Reducing Concentrations in Fish and Risks Within 4-Years

Site Remediation Fostered Downward Trends in Contamination of Sediment and River Bank Soil Within 4-Years, with Exception of Total PAH

